Time Series Analysis, Forecasting, and Machine Learning - Python for LSTMs, ARIMA, Deep Learning, AI, Support Vector Regression, +More Applied to Time Series Forecasting
What you'll learn
- ETS and Exponential Smoothing Models
- Holt's Linear Trend Model and Holt-Winters
- Autoregressive and Moving Average Models (ARIMA)
- Seasonal ARIMA (SARIMA), and SARIMAX
- Auto ARIMA
- The statsmodels Python library
- The pmdarima Python library
- Machine learning for time series forecasting
- Deep learning (ANNs, CNNs, RNNs, and LSTMs) for time series forecasting
- Tensorflow 2 for predicting stock prices and returns
- Vector autoregression (VAR) and vector moving average (VMA) models (VARMA)
- AWS Forecast (Amazon's time series forecasting service)
- FB Prophet (Facebook's time series library)
- Modeling and forecasting financial time series
- GARCH (volatility modeling)
PREVIEW THIS COURSE - GET COUPON CODE
Advertisement